

SECRETARIA MUNICIPAL DE EDUCAÇÃO, ESPORTE E LAZER

A mudança está em nossas mãos

Atividades Orientadoras

Ensino Fundamental

Equações do 2º grau incompletas

Toda equação que pode ser escrita na forma: $ax^2 + bx + c = 0$ é conhecida como **equação do segundo grau**. As regras para essa definição são apenas que o **a** seja sempre diferente de zero e que os números representados pelas letras a, b e c – chamados **coeficientes** – pertençam ao conjunto dos números reais.

Assim, o único coeficiente que necessariamente não pode ser zero é o coeficiente **a**. Quando um dos outros dois coeficientes é igual a zero (ou ambos), dizemos que a equação do segundo grau é **incompleta**.

Veja os exemplos:

- $2x^2 + 3x 5 = 0 \rightarrow a = 2$; b = 3; $c = -5 \rightarrow \text{equação completa}$
- $3x^2 5x = 0 \rightarrow a = 3$; b = -5; $c = 0 \rightarrow$ equação incompleta
- $x^2 4 = 0 \rightarrow a = 1$; b = 0; $c = 4 \rightarrow$ equação incompleta

Hoje focaremos nossos estudos na resolução das equações incompletas.

• Quando C = 0

Quando apenas o coeficiente c é igual a zero, é possível calcular os resultados da equação do segundo grau apenas colocando a incógnita em evidência. Na equação $x^2 + 16x = 0$, teremos:

$$x(x + 16) = 0$$

O resultado de colocar a incógnita em evidência é um produto no qual um dos fatores é x e o outro é x + 16. Para que esse produto realmente seja igual a zero, como a igualdade garante, deveremos ter apenas:

$$x = 0$$
 ou $x + 16 = 0$

No primeiro caso, o resultado já seria zero, o que faz com que x = 0 seja um resultado para essa equação. No segundo, podemos fazer:

$$x + 16 = 0$$

$$x = -16$$

Então, as soluções para essa equação são: x = 0 e x = -16.

• Quando B = 0

Se apenas o coeficiente *b* for igual a zero, a equação do segundo grau poderá ser solucionada usando conhecimentos básicos de equações. Observe o exemplo:

$$x^2 - 25 = 0$$

$$x^2 = 25$$

Agora, faça raiz quadrada em ambos os membros da **equação**, lembrando que isso resulta em dois valores distintos da raiz de 25: um positivo e outro negativo:

$$\sqrt{x^2} = \pm \sqrt{25}$$

$$x = \pm 5$$

Observações: Quando os coeficientes a e c forem positivos, não será possível encontrar soluções reais para a equação em que b = 0, pois o resultado será uma raiz de um número negativo.

Exemplo: $2x^2 + 8 = 0$

$$2x^2 = -8$$

$$x^2 = -4$$

$$x = \pm \sqrt{-4}$$

Como não existe raiz quadrada real de número negativo, essa equação não possui solução real.

<u> Atividades</u>

 Identifique os coeficientes das equações e classifique-as como completas ou incompletas:

a)
$$2x^2 - 5x + 6 = 0$$

b)
$$6x^2 + 3x = 0$$

c)
$$x^2 - x - 1 = 0$$

d)
$$\frac{1}{2}x^2 + 9 = 0$$

e)
$$3x^2 + 4x = -3$$

- 2. Uma equação do 2º grau é considerada incompleta quando:
 - A) possui uma única solução.
 - B) os coeficientes b ou c são iguais a zero.
 - C) não possui soluções reais.
 - D) possui coeficientes negativos.

- **3.** Resolva as equações com b = 0 abaixo:
 - a) $x^2 9 = 0$
 - b) $x^2 256 = 0$
 - c) $2x^2 128 = 0$
 - d) $x^2 \frac{16}{25} = 0$
 - e) $-3x^2 + 243 = 0$
 - f) $2x^2 + 72 = 0$
- **4.** Dada a equação $x^2 25 = 0$, com soluções no conjunto dos números reais, julgue as afirmativas a seguir:
 - $I \rightarrow A$ soma das soluções da equação é igual a zero.
 - II \rightarrow O conjunto de soluções é S{-5, 5}.
 - III → Essa equação é incompleta.
 - A) Somente I é falsa.
 - B) Somente II é falsa.
 - C) Somente III é falsa.
 - D) Todas são verdadeiras.
 - E) Todas são falsas.
- 5. Analise as equações a seguir:

$$1 \rightarrow 2x^2 + 3x - 0 = 0$$

$$II \rightarrow x^2 + 3 = 2x$$

$$III \to x^2 + x - 1 = 0$$

São consideradas equações do 2º grau incompletas:

- A) Somente I
- B) Somente II
- C) Somente III
- D) Somente I e II
- E) Somente II e III
 - **6.** Resolva as equações com c=0 abaixo:

a)
$$x^2 - 4x = 0$$

b)
$$x^2 + 12x = 0$$

c)
$$2x^2 - 6x = 0$$

d)
$$-3x^2 + 15x = 0$$

- 7. Dadas as equações $x^2 + 4x = 0$ e $2x^2 18 = 0$, a soma das raízes não nulas delas é igual a:
 - A) -4
 - B) -3
 - C) 0
 - D) 3
 - E) 2
- **8.** Ao fazer o lançamento de um móvel, o físico descreveu que a relação entre distância e altura pode ser dada pela função d(t) = -4t² + 24t. Sendo assim, sabendo que ele parte da distância zero, a distância percorrida por esse móvelaté atingir d(t) = 0 novamente será de: (*Dica: Resolva a equação* -4t² + 24t = 0.)
 - A) 2 segundos
 - B) 3 segundos
 - C) 4 segundos
 - D) 5 segundos
 - E) 6 segundos
 - **9.** Dada a equação do 2º grau a seguir, podemos afirmar que o conjunto de soluções dessa equação é igual a:

$$2x^2 - 8 = 0$$

- A) $S = \{-2, 2\}$
- B) $S = \{-4, 4\}$
- C) $S = \{-1, 1\}$
- D) $S = \{0, 4\}$
- E) $S = \{0, 2\}$
- **10.** A equação $x^2 6x = 0$:
 - (A) não tem raízes reais.
 - (B) tem uma raiz nula e outra negativa.
 - (C) tem uma raiz nula e outra positiva.
 - (D) tem duas raízes reais simétricas.
- 11. Abadia possui **x** pares de sapatos, esse número multiplicado pelo seu dobro é igual a 288. Qual é esse número? $(x \cdot 2x = 288)$
 - A) 12
 - B) 14
 - C) 16
 - D) 144